Projeto: "Água"

Sinópse do Projeto: Descontaminação e despoluição de água e o tratamento de esgotos de retorno a natureza.

Justificativa: A água é um recurso natural essencial para nossa sobrevivência e a de todas as espécies que habitam a Terra. A água é vital para o ser humano; no organismo ela atua como veículo para a troca de substâncias e também para a manutenção da temperatura corporal. O volume total de água na Terra não aumenta nem diminui: é sempre o mesmo desde a criação. Hoje somos cerca de 6 bilhões de pessoas que, com outros seres vivos, repartem esta água.

Público Alvo: Todo agente (privado ou governamental) de emissão ou condutor de poluentes ou infectantes de águas de abastecimento, de uso industrial, de uso na lavoura etc, para retorno ao meio ambiente.

Objetivo: desenvolver parcerias com o 1º e 2º setores, voltado para a despoluição, desinfecção e tratamento de águas e esgotos através de equipamento apropriado, em todo o território nacional; o que se dará por meio do estabelecimento de vínculo de cooperação entre as partes, gozando quando possível dos benefícios fiscais da Lei 9249/95.

Técnologia aplicada (equipamentos): Dispomos de equipamentos de última geração para tratamento de água e esgotos de indústrias, água de uso e reuso industrial, comércio, hospitais, condomínios, centrais de tratamento de esgotos de municipios, centrais de tratamento e distribuição de água para abastecimento de municípios, efluentes, córregos, rios etc.

Técnologia aplicada (agente): Ozônio

1.1 INTRODUÇÃO

O gás ozônio começou a ser conhecido em 1781, quando pela primeira vez seu odor característico foi detectado e somente em 1837 o ozônio foi reconhecido como uma substância química. Mesmo assim, trinta anos se passaram para que em 1867, a fórmula triatômica do ozônio fosse descrita e reconhecida. A habilidade do ozônio para desinfecção de água foi descoberta em 1886 e em 1891 testes pilotos já eram realizados em Martinkenfelde, na Alemanha. No entanto, a primeira instalação de ozônio em escala industrial ocorreu em 1893, em Oudshoorm, na Holanda, objetivando a desinfecção de água na estação de tratamento de água potável desta cidade. Até 1914 o número de estações de tratamento de água utilizando ozônio cresceu significativamente e na Europa já haviam pelo menos 49 instalações. O crescimento do ozônio caiu muito na época da primeira guerra mundial, quando pesquisas relacionadas a gases venenosos levaram a dexcoberta do cloro, que do ponto de vista econômico era mais vantajoso. Mesmo assim, o número de instalações de ozônio continuou a crescendo, principalmente na Europa, e em 1936 já haviam aproximadamente 100 instalações na França e 140 no mundo. Desta forma as aplicações de ozônio não são tão recentes como muitos imaginam, pois na verdade mais de um século já se passou desde a primeira instalação. Porém a realidade é que o cloro sempre foi mais barato e é atualmente o desinfectante mais utilizado mundialmente. A partir de 1975, foi descoberto que compostos organoclorados (subprodutos das reações do cloro com matéria orgânica) são cancerígenos e consequentemente o cloro começou a ter sua aplicação cada vez mais limitada. A principal preocupação quanto aos organoclorados é o potencial de formação dos trihalometanos (THM), produzidos geralmente na fase de pré-oxidação da água bruta com cloro antes do processo fisico-químico de tratamento de água. Desta forma o ozônio ressurgiu como uma das principais alternativas na substituição do cloro, resultando na retomada do desenvolvimento das aplicações de ozônio e principalmente dos sistemas de geração de ozônio. O resultado deste movimento foi a redução dos custos de capital e operacional do sistema de ozonização em aproximadamente 40 %.

1.2 CARACTERÍSTICAS E PROPRIEDADES DO OZÔNIO Propriedades Físico-químicas:

Forma triatômica do oxigênio

Gás instável, incolor nas condições atmosféricas, com odor característico mesmo a baixas concentrações

Fórmula química: O3 Massa molecular: 48,0

Ponto de ebulição a 1 atm: - 111,9 °C Ponto de fusão a 1 atm: - 192,5 °C

Massa específica do gás nas CNTP: 2,14 g/litro

Meia-vida em água a 20 °C: 20 minutos

Características:

O ozônio é o mais poderoso oxidante utilizável (1,5 vezes mais forte do que o cloro)

O ozônio é 3.125 vezes mais rápido do que o cloro na inativação de bactérias O ozônio não produz toxinas na água

O ozônio é gerado no local de utilização - O transporte, manuseio e estoque não são necessários

Quando não consumido, decompõe-se naturalmente em oxigênio.

PODER DE OXIDAÇÃO RELATIVA DE SUBSTÂNCIAS DESINFECTANTE

Desinfectantes	Potencial de Oxidação(Volts)	Poder relatívo deOxidação*
Ozônio	2,07	1,52
Peróxido de hidrogênio	1,77	1,30
Hipoclorito	1,49	1,10
Cloro	1,36	1,00

^{*} Baseado no cloro como referência (=1,00)

POTENCIAL DE OXIDAÇÃO

Oxidante	Potencial (V)
Radical hidroxila	2,8
Ozônio	2,07
Peróxido de hidrogênio	1,78
Permanganato de potássio	1,70
Hidrocloreto	1,49
Cloro	1,36
Dióxido de cloro	1,27
Oxigênio	1,23

OZÔNIO É O AGENTE DE DESINFECÇÃO MAIS PODEROSO E RÁPIDO

Basicamente, o que diferencia o ozônio dos diversos agentes desinfectantes, é o seu mecanismo de destruição dos microorganismos. O cloro por exemplo, atua por difusão através da parede celular, para então agir sobre os elementos vitais no interior da célula, como enzimas, proteínas, DNA e RNA. O ozônio, por ser mais oxidante, age diretamente na parede celular, causando sua ruptura, demandando menor tempo de contato e tornando impossível sua reativação. Dependendo do tipo de microorganismo, o ozônio pode ser até 3.125 vezes mais rápido que o cloro na inativação celular.

TAXAS RELATIVAS DE DESINFECÇÃO

DESINFECTANTE	CONCENTRAÇÃO mg/l	ESCHERIC. COLI contagem por ml	TEMPO para 99 % de DESINFECÇÃO
Ozônio	0,1	60.000	0,08
Cloro	0,1	60.000	250

As principais aplicações incluem:

Desinfecção de água fresca

água de processo e água de resfriamento

Desinfecção, descoloração, desodorização e desintoxicação de efluentes e melhoria da biodegrabilidade

Oxidação de off gases

Brilho óptico e branqueamento de matérias primas e produtos

Melhoria dos processos de cobertura (coating)

Sínteses orgânicas (processos de ozonólise)

COMPARATIVO DO COEFICIENTE DE LETALIDADE ENTRE O CLORO,

DIÓXIDO DE CLORO E OZÔNIO

Target	C*T index mg/l * min.	Reference / Remarks
E.Coli (>99,99 Reduction)		From gws Wasser-Abwasser 137(1996),No.2, Page 83-93
Chlorine	34	
Chlorine dioxide	1,2	
Ozone	0,0120,04	

Gurdia lamblia (>99,99 Reduction)		From gws Wasser-Abwasser 137(1996),No.2, Page 83-93
Chlorine	104122	ph=7, t= 10°C
Chlorine dioxide	23	ph=7, t= 10°C
Ozone	1,4	ph=7, t= 10°C

Cryptosporidium parvum (>99,99 Reduction)		From gws Wasser-Abwasser 137(1996),No.2, Page 83-93
Chlorine	1440	ph=7, t= 10°C
Chlorine dioxide	>120	ph=7, t= 10°C
Ozone	>5	ph=7, t= 10°C

Água doce e processos de tratamento de água

Devido ao efeito positivo nas substâncias interferentes, ozônio é freqüentemente usado no tratamento de água, de água de processo e de efluentes. As principais aplicações são: . Desinfecção nos processos de lavagem (lavagem de frutas, legumes e verduras) . Desinfecção de sistemas de lavagem de garrafas . Deferretização e demanganetização . Melhoria de gosto e odor . Eliminação de limo e depósitos em tubos, trocadores de calor, conexões, etc.

2. GERAÇÃO DE OZÔNIO

O ozônio é gerado quando uma corrente alternada de alta voltagem é descarregada na presença de oxigênio. O maior exemplo é o que ocorre na natureza, quando em dias de tempestade há grande produção de ozônio na atmosfera devido às elevadas descargas elétricas provenientes dos relâmpagos. O gerador de ozônio basicamente reproduz, de forma controlada e eficaz, este fenômeno natural, aliando alta tecnologia na área de materiais à eletroeletrônica avançada. Desta forma, a geração de ozônio ocorre pelo princípio de Descarga elétrica de Corona, que consiste na aplicação de uma descarga elétrica a média frequência para acelerar elétrons e assim prover a energia cinética suficiente para partir, através do impacto, as ligações da molécula de oxigênio. Os àtomos livres reagem com outras moléculas de oxigênio para a formação do ozônio.

QUALIDADE DO GÁS DE ALIMENTAÇÃO

O gás que alimenta o gerador é de fundamental importância para se atingir os objetivos quanto a viabilidade técnica e econômica do processo. O gás pode ser o ar atmosférico seco, ar enriquecido com oxigênio e oxigênio puro. Quando ozônio é gerado a partir de ar enriquecido com oxigênio, elétrons também se chocam com as moléculas de nitrogênio, produzindo àtomos reativos de nitrogênio. O resultado é a formação de NO, que vai reagir com o ozônio gerado produzindo Nox e reduzindo parte da quantidade de ozônio gerado.

Quando o ar de alimentação possui alto teor de umidade, ocorre a formação e deposição de ácido nítrico nas paredes internas da célula geradora de ozônio, reduzindo substancialmente a sua vida útil. Geralmente o gás de alimentação não deve exceder a - 45 °C, o que corresponde a uma umidade de 20 ppm. Outro relevante aspecto é a presença de impurezas orgânicas no gás de alimentação, tais como hidrocarbonetos provenientes dos compressores de ar.; estes hidrocarbonetos além de nocivos a produção de ozônio e a vida útil das células de geração podem comprometer a segurança operacional do sistema.

A utilização de ar como gás de alimentação é simples se considerarmos que o ar se encontra livre e disponível na atmosfera. Do ponto de vista operacional, e até mesmo econômico, não se pode esperar tal simplicidade. Diversos equipamentos, tais como compressores, desumidificadores, secadores e urificadores, devem ser empregados a fim de condicionar o ar antes do ozonizador.

O emprego de oxigênio puro, produzido pelo processo criogênico, possui baixíssimos teores de impurezas, eliminando a necessidade dos equipamentos para condicionamento do gás de alimentação. Além disso, quando se utiliza oxigênio a eficiência de produção de ozônio é 2,3 vezes maior do que quando se utiliza ar comprimido. Essas duas vantagens do uso do oxigênio reduzem significativamente o custo da capital do sistema de geração de ozônio (cerca de 33%). Até 1990, somente 30 % das plantas de ozônio em todo o mundo utilizavam oxigênio, porém atualmente das instalações em construção já optaram pelo uso do oxigênio e estima-se que no ano de 2000 mais de 50% das instalações em operação estarão empregando o oxigênio ao invés do ar.

Os principais motivos são:

Manutenção: Atualmente a amostragem dos custos de manutenção do sistema de condicionamento do ar já é maior e representa uma parcela significativa da operação, apesar de difícil de ser quantificada. O sistema com oxigênio não apresenta este problema.

Tecnologia: As tecnologias mais recentes já permitem geração de ozônio a concentração de 20% a partir do oxigênio. Utilizando-se o ar comprimido, o máximo possível é 3% em base mássica. Consequentemente, novas tecnologias relacionadas a aplicação de ozônio em alta concentração estão surgindo e limitando cada vez mais o uso do ar. É importante colocar, que atualmente a concentração máxima viável comercialmente é em torno de 10 a 12% sendo muito dependente do tipo de aplicação e do valor que o ozônio agrega ao produto.

Sistemas integrados: O desenvolvimento de sistemas integrados de produção de oxigênio e ozônio, ou seja, a geração de ozônio a partir do oxigênio produzido através de PSA. Esta forma de produção de ozônio reduz o custo do oxigênio líquido por exemplo, que geralmente agrega um valor significativo referente a frete.

3. VANTAGENS NA UTILIZAÇÃO DO OZÔNIO

O ozônio é um gás com alto poder oxidante e alta velocidade de reação, capaz de promover desinfecção pela oxidação de microorganismos assim como oxidar compostos como fenol, cianeto, metais pesados e compostos orgânicos.

Em relação ao cloro, tem 1,5 vêzes maior poder de oxidação e dependendo da substância que está sendo atacada é até 1500 vezes mais rápido. A pressão parcial do ozônio é bastante inferior à do oxigênio, sendo facilmente absorvidopela água (50 vezes mais rápido que o oxigênio).

Os efeitos da utilização do ozônio no tratamento água e de efluentes são principalmente:

destruição de compostos por quebra das cadeias (desassociação oxidante); redução de metais às suas formas insolúveis (normalização); mineralização (solidificação) de compostos orgânicos dissolvidos, causando a sua coagulação e recipitação;

elevação do potencial redox da água, causando a microfloculação dos patogênicos que podem ser removidos por filtração.

O uso do ozônio também alia as seguintes vantagens:

auxiliar de microfloculação:

redução de trialometanos (THM's)

remoção de cor;

alta reatividade contrapoluentes e agrotóxicos; desinfecção bacteriológica; eliminação de AOX; eliminação de blowdown (menor custo com água); eliminação de microorganismos e inativação de virus; fácil de operar com geração no próprio local; melhoria na troca térmica (economia de energia); não há necessidade de outros agentes ou catalizadores; oxidação de complexos como EDTA; oxidação de compostos orgânicos (fenóis, detergentes, pesticidas); oxidação de substâncias inorgânicas como cianetos, sulfetos e nitritos; pequenas taxas de corrosão; redução de custos com mão de obra; redução de DOC (Dissolved Organic Carbon); redução de DQO e DBO;

remoção de ferro solúvel e manganês por oxidação; remoção de sabor e odor; respeito ao Meio Ambiente; tecnologia altamente confiável.

Aplicações do Ozônio:

água potável;
água de resfriamento;
efluentes de indústrias químicas e farmacêuticas;
água de processo;
efluente de fábrica de papel e celulose;
redução de odor e NOX;
processos de branqueamento;
água mineral (enxague de desinfecção de reatores, tanques, garrafas);
processo de lavagem (saladas, etc);
tratamento de lixívia, chorume;
efluente de indústria têxtil;
processos de síntese;
outros.